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Abstract A very sensitive and reversible optical chemical
sensor based on a novel tetradentate Schiff base namely
N.N/bis(2-aminothiophenol)benzene-1,2-dicarboxaldehyde
(ATBD) immobilized within a plasticized PVC film for Hg2+

determination is described. At optimum conditions (i.e.
pH 6.0), the proposed sensor displayed a linear response to
Hg2+ over 1.0×10−10 − 1.0×10−2 mol L−1 with a limit of
detection of 7.23×10−11 mol L−1 (0.0145 μgL−1). Moreover,
the results revealed that, under batch condition, the sensor is
fully reversible within a response time~35 s. In addition to its
high stability and reproducibility, the sensor showed good
selectivity towards Hg2+ ion with respect to common metal
cations. The sensor was successfully applied for determination
of Hg2+ ion in some real samples, including hair, urine and well
water samples. The results were in good correlation with the
data obtained using cold vapor atomic absorption spectrometry.

Keywords NSSNSchiff base . PVCmembrane . Fluorescent
sensor . Hg2+ ion

Introduction

Development of sensitive chemosensors have been receiving
much attention in recent years because of their potential
applications in clinical biochemistry and environment.
Metal-selective fluorescent chemosensors are served as useful
tools for detection of metal ions due to their intrinsic sensitiv-
ity and selectivity [1, 2].

Chemical optical sensors (optodes) offer several advan-
tages such as simple preparation procedure, relatively fast
response, wide response range, reasonable selectivity and high
sensitivity [3, 4]. The immobilization of various sensing re-
agents of optode membranes have been developed for many
analytically relevant ions, especially heavy metal ions. Immo-
bilization of dyes into or onto a solid support is a key issue for
their application in optical sensing [5]. The reagent is normal-
ly physically entrapped by adsorption, electrostatic attraction
or chemical bonding to the solid support. Generally, sol–gel
glasses [6, 7] or polymer matrices [8, 9] are used for the
preparation of the optodes. Poly(vinyl chloride) (PVC) has
been used for the preparation of membrane optodes due to its
relatively low cost, good mechanical properties and amena-
bility to plasticization [10].

Mercury ion is one of the most prevalent toxic heavy metal
ions causing environmental and health problems because of its
wide distribution and severe immunotoxic, genotoxic, and
neurotoxic effects [11–13]. Hg2+ is a highly stable inorganic
form ofmercury, which, according EPA andWHO guidelines,
must be in concentrations<0.002 mgL−1 in well water [14].
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Many current techniques for mercury screenings were
assigned such as atomic absorption spectrometry [15–18],
inductively coupled plasma-mass spectroscopy [19–21],
X-ray fluorescence spectrometry [22, 23], neutron activation
analysis [24, 25], cold vapor atomic absorption spectrometry
[26], electrothermal atomic absorption spectrometry [27–29],
anodic stripping voltammetry [30–33], high-performance liq-
uid chromatography [34–36], atomic fluorescence spectrom-
etry [37], potentiometric ion-selective electrodes [38–40] and
spectrophotometry [41–50].

Most of these methods suffer from some problems such as
poor reproducibility, limited sample adaptability, high cost,
well-controlled experimental conditions, multi-step sample
pre-treatments, some inherent interference, time consuming
procedures and too expensive involving the use of sophisti-
cated instrumentation, the wide utilization of these methods is
largely limited. So, for simplicity, convenience, no necessity
of the reference solution, low cost, and fieldwork applicability
the easily prepared optical sensors are highly demanding.

Recently, some selective fluorescent chemosensors for
Hg2+ based on fluorescence enhancement or fluorescence
quenching has been reported [51–67]. However, most of them
have disadvantage in practical use, such as low water solubil-
ity, interference from other metal ions, strict reaction condition
or complicated synthetic route. Therefore, development of
simple fluorescent chemosensor that can selectively sense
Hg2+ in aqueous media is significant. In construction of opti-
cal sensors Schiff’s base ligands have been frequently used as

ionophores in construction of membrane sensors because of
their ability to form stable complexes with transition metal
ions. They produce remarkable selectivity, sensitivity and
stability for a specific ion [68–71].

Keeping these facts in mind, in this work, we develop an
optode for sensitive and selective determination of Hg2+. This
optode is prepared by immobilizing a novel tetradentate Schiff
base bearing two thiol groups as the sensing reagent in PVC
membrane according to a simple method. The membrane sen-
sitivity, selectivity, reproducibility, short-term stability, lifetime
and regeneration under optimum conditions were fully studied.
Moreover, the response mechanism and binding mode were
investigated by 1HNMRandTOF-MS. Finally, the novel sensor
was applied for determination of Hg2+ ion in some different real
samples, including hair, urine and well water samples.

Experimental

Instruments

All fluorescence measurements were carried out on a Jenway
6270 Fluorimeter. The excitation source was a Pulsed Xenon
Lamp. The UV–Vis spectra were recorded on a Shimadzu UV
1800 Spectrophotometer. pH measurements were performed
by Jenway pH meter model 3510 equipped with Glass bodied
combination pH electrode (924005) and calibrated with Meck
pH standards of pH 4.00, 7.00, and 10.00. All of the experi-
ments were carried out at room temperature 25±1 °C. FT-IR
spectrum of the ionophore was obtained in KBr discs on a
Unicam-Mattson 1000 FT-IR. 1H NMR spectra were per-
formed on a 300 MHz NMR spectrometer in DMSO-d6
solvent and TMS was used as an internal reference. Mass
spectra (TOF-MS) were recorded on Waters (USA) KC-455
model with ES+ mode in DMSO.

Materials and Reagents

2-aminothiophenol, benzene-1,2-dicarboxaldehyde (o-
phthaldhyde) and the lipophilic anionic additive reagent potas-
sium tetrakis-(4-chlorophenyl) borate (KTpClPB)were supplied
from Aldrich. The polymer membrane components, polyvinyl
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Fig. 1 Optimal structure of the chemosensor (ATBD)
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chloride (PVC) (high molecular weight) and the plasticizers,
bis-(2-ethylhexyl) phtalate (DOP), bis(2-ethylhexyl)sebecate
(DOS), bis-(2-ethylhexyl) adipate (DAO) and 2-nitrophenyl
octyl ether (NPOE) were obtained from Fluka. Absolute ethanol
(EtOH), tetrahydrofuran (THF), and dicholormethane (DCM)
were purchased from Merck. All solvents were of analytical
grade and they were used as received. A stock solution of 1.0×
10−2 M was prepared by dissolving 0.3606 g of Hg(NO3)2·
2H2O in exactly 100 ml of deionized water and standardized
with the EDTA solution [72]. The stock solution was serially
diluted to achieve the desired concentrations.

Synthesis of N.N/bis(2-aminothiophenol)
benzene-1,2-dicarboxaldehyde (ATBD)

An ethanolic solution of 2-amiothiophenol (10 mmol) was
mixed with an ethanolic solution of o-phaldehyde (5 mmol), 2
drops of acetic acid and magnetically stirred in a round bottom
flask. The reaction mixture was then refluxed for~5 h at 60 °C
in water bath and kept overnight. The resulting solution was
then poured into crushed ice water. The precipitate formed
was filtered and recrystallized from hot methanol and dried in
a desiccator over anhydrous CaCl2 under vacuum to get
chromatographically (TLC) pure compound. Synthetic route
of ATBD is shown in Scheme 1.

Characteristics of ATBD were as follows (C20H16N2S2):
M.Wt: 348.494 Yield: 87 %. Color: Orange. Elemental anal-
ysis Calc. (%): C, 68.93; H, 4.62; N, 8.03 Found: C, 68.40; H,
4.39; N, 8.00. IR (KBr pellet. cm−1): 2543 (νSH); 1612
(νC=N); 798 (νC−S).

1H NMR (DMSO-d6, 300 MHz): δ 3.64
(s, 2H; SH); 8.23 (s, 2H; HC=N); 6.74−7.57 (m, 14H;

aromatic). TOF-MS (m/z): 348 (M+). The optimal structure
of the chemosensor (ATBD) is shown in Fig. 1 by using
Avogadro program Version 1.0.1.

Preparation of the Optode Membrane

Membrane solutions were prepared by dissolving 30 mg of
PVC, 65 mg of plasticizer (DOS), 2.0 mg of KTpClPB and
3.0 mg ATBD in 2.0 ml THF. The solution was stirred with a
magnetic stirrer to obtain a homogeneous mixture. Glass slides
for bulk measurements were cut from microscope slides into
12 mm×16 mm dimensions to fit precisely into its diagonal
width of standard quartz cell. To improve the adhesion of the
membrane, the glass slides were cleaned with THF, sulfuric
acid and sodium hydroxide solutions, respectively, then thor-
oughly rinsed with deionized water and finally dried in an oven
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Fig. 2 UV–Vis absorption
spectra of ATBD (2.0 μM) with 1
equivalent metal ions (K+, Na+,
Mg2+, Ca2+, Ba2+, Sr2+, Al3+,
Co2+, Ni2+, Cu2+, Zn2+, Pb2+,
Ag+, Cd2+, Mn2+, Fe3+, Cr3+ and
Hg2+)

Fig. 3 The color change of the sensor upon complexation with Hg2+ ions
(1 ATBD; 2 ATBD + Hg2+)

J Fluoresc (2014) 24:859–874 861



at 110 °C. Membranes were cast by placing 35 μl of the
membrane solution onto the glass slide of ~10 μm thickness
and spread evenly using a capillary glass tube [73, 74]. The
thickness of the films was in the order of 3–4 μm (as evaluated
from the volume employed for spreading). After 2 min. the
coated slides were transferred to a Petri dish with a filter paper
cover and then stored away from light for 12 h before use.
Blank (reference) membranes were prepared in a similar way
excluding ATBD from the membrane solution. Absorption and
fluorescence emission spectra of PVCmembranes were record-
ed in quartz cells which were filled with sample solution. The
polymer films were placed in diagonal position in the quartz
cell. All of the experiments were operated at room temperature
(25±1 °C). The membranes were not conditioned before use.

Measurement Procedure

The membranes were diagonally placed inside the sample
cuvette of the instrument containing 2 ml buffer solution of
pH 6.0 and a blank membrane (without ionophore) was put in
the reference cuvett containing the buffer solution. The fluo-
rescence intensity at an excitation wavelength of 403 nm was
measured at 544 nm. The sample was then titrated with a
standard Hg2+ ion solution using a pre-calibrated micropipette
and the fluorescence intensity of the system was measured
after ~35 s (required to reach equilibrium).

Preparation of Real Samples

Hair Samples

Scalp hair samples as a suitable specimen for monitoring
human exposure to mercury, were used in this study. The hair

sample was first soaked in deionized water for 10 min. This
was followed by soaking in 1 % triton X-100 solution for
20 min [75]. The hair sample was then rinsed five times with
deionized water and air-dried. 0.250 g of dried hair sample
was digested with 5.0 ml 0.1 M HNO3 for 2 h at ~120 ◦C.
Finally 3.0 ml of H2O2 was added to the sample and digested.
The residue was diluted with deionized water to 50.0 ml
volumetric flask.

Urine Samples

Most mercury present in the urine is in the form of inorganic
mercury. The mercury concentration in the urine increases in
relation to the level of inorganic mercury accumulated in the
kidneys [76]. Accordingly, the total mercury value in the urine
is an important biomarker for evaluating inorganic mercury/
mercury vapor exposure. Dental clinics are known to be one of
the largest users of inorganic and metalic mercury [77]. Mer-
cury, which vaporizes at room temperature and easily enters
the environment, is used in the preparation of amalgam alloy
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Fig. 4 Emission and excitation
spectra of ATBD in (a) DCM, (b)
THF, (c) EtOH and (d) PVC

Table 1 Emission and excitation spectral data of ATBD in various
solvents and PVC membrane

Solvent Polarity
index (P)

Wavelength
(nm)

Stokes shift Refractive index

λex λem ΔλST (nm) η

DCM 3.1 406 502 96 1.42

THF 4 400 498 98 1.40

EtOH 5.2 408 510 102 1.36

PVC – 403 544 141 1.52
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that consists chiefly of silver mixed with mercury and variable
amounts of other metals and is used as a dental filling. It is well
documented that dentists who work with amalgam are chroni-
cally exposed to mercury vapors, which can accumulate in their
bodies to much more higher levels than for most non-
occupationally exposed individuals. 24-h urine samples were
obtained from dentists who had several months of steady
exposure, at the end of a working week in 2.5 l polypropylene
sampling vessels followed by the addition of concentrated
HNO3 to yield a final acid concentration of 1–3 % v/v and
the samples were stored at −20 °C prior to analysis.

Preparation of Well Water Samples

Before the analysis, water samples were filtered through a
Whatman No. 41 filter paper. The organic content of the water

samples were oxidized in the presence of 1 % H2O2 followed
by addition of concentrated nitric acid, then the pH of water
samples was adjusted to 6.0.

Results and Discussion

UV–Vis Spectral Responses of ATBD

It has been anticipated that, due to the presence of various
donor sites in the form of N and S atoms, ATBDwould behave
as a potential ligand for complexation reaction with metal
ions. To explore the properties of ATBD as an optically
sensing material, various metal ions were tested in a prelimi-
nary experiment. The binding affinity of ATBD was moni-
tored through absorption spectra of ATBD (2.0 μM) in
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Fig. 5 Emission spectra of
ATBD sensing membrane after
exposure to 1.0 μM different
metal ions (K+, Na+, Mg2+, Ca2+,
Ba2+, Sr2+, Al3+, Co2+, Ni2+,
Cu2+, Zn2+, Pb2+, Ag+, Cd2+,
Mn2+, Fe3+, Cr3+,Al3+and Hg2+)

Table 2 The effect of membrane ingredients on the response behavior of optodes (n=5)

Optode No. PVC (mg) Plasticizer (mg) KTpClPB (mg) ATBD (mg) Working concentration range (mol L−1) Response time (sec)

1 30 NPOE (67) 0 3 6.4×10−7 to 2.0×10−5 120

2 30 DOA (67) 0 3 2.6×10−6 to 1.0×10−5 150

3 30 DOP (67) 0 3 5.0×10−7 to 3.0×10−4 200

4 30 DOS (67) 0 3 1.0×10−8 to 3.0×10−4 80

6 30 DOS (66) 1 3 1.3×10−9 to 2.0×10−3 60

7 30 DOS (65) 2 3 1.0×10−10 to 1.0×10−2 35

8 30 DOS (64) 3 3 6.4×10−7 to 4.0×10−5 80

9 30 DOS(64) 4 2 8.0×10−7 to 3.0×10−3 100

10 30 DOS (64) 5 1 2.0×10−6 to 3.0×10−3 130
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absence and presence of 1 equivalent tested metal ions of K+,
Na+, Mg2+, Ca2+, Ba2+, Sr2+, Al3+, Co2+, Ni2+, Cu2+, Zn2+,
Pb2+, Ag+, Cd2+, Mn2+, Fe3+ Cr3+ and Hg2+ (Fig. 2). As
shown in Fig. 2, ATBD shows two absorption bands, the first
at 293 which can be assigned to π-π* transitions from the
benzene ring and the double bond of the azomethine group
and the second at 356 nm due to n-π* transition of non-
bonding electrons present on the nitrogen of the azomethine
group. Upon addition of addition of Hg2+, the color of ATBD
solution concomitantly, changes from yellow-orange to a pink
(Fig. 3), inducing a bathochromic shift of ATBD bands and a
new band was originated at 428 nm, which may assigned to
charge transfer. In contrast, addition of other metal ions
showed insignificant changes. The results demonstrated that
ATBD is characteristic of high selectivity toward Hg2+ over
other competitive metal ions.

Fluorescence Spectral Responses of ATBD

In order to perform the fluorescence characterization of the
ATBD, the emission and excitation spectra of ATBD were
recorded in solvents of different polarities and PVC matrix.
The gathered excitation-emission spectra are shown in Fig. 4.
The Stokes shift values, ΔλST (the difference between
excitation and emission maxima) were extracted from spectral
data which are given in Table 1. Since larger Stokes shifts
are obtained in polar solvents [78], the highest Stokes shift for

the ATBDwas observed in EtOH.Moreover, ATBD exhibited
higher fluorescence intensity in PVC matrix compared to that
in the solvents. The immobilization of ATBD molecules in
solid matrix may reduce intramolecular motions and rear-
rangements, thus leading to enhanced fluorescence capability.

In order to explore the selective sensing of ATBD towards
Hg2+, fluorescence spectra of ATBD immobilized on PVC
membrane were measured in EtOH with respective metal
ions including K+, Na+, Mg2+, Ca2+, Ba2+, Sr2+, Al3+, Co2+,
Ni2+, Cu2+, Zn2+, Pb2+, Ag+, Cd2+, Mn2+, Fe3+ Cr3+ and
Hg2+ (Fig. 5). As in shown in Fig. 5, ATBD exhibit weak
fluorescence emission when excited at 403 nm and when
Hg2+ (1.0 μM) was added, a prominent fluorescent en-
hancement was observed at 544 nm and it was found that
the other studied ions didn’t induce any apparent fluores-
cent enhancement.

Optimization of Composition of the Membrane Components

The response characteristics and working concentration range
of optical membrane sensors are known to be largely affected
by changes in the membrane composition [9, 79]. A compar-
ative study on the effect of different plasticizers and matrix
materials on the performance of sensor has been made. Sev-
eral optode membranes were prepared using different plasti-
cizers such as DOP, DOS, DAO, NPOE and the fluorescence
measurements were made for different concentrations of
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Fig. 6 Effect of pH on the
response of the ATBD optode in
the presence of 1.0 μM Hg2+ at
544 nm (λex 403 nm)

L(org) + K+ + TpClPB- + Hg2+
(aq) LHg(org) + TpClPB-

(org) + K+
(aq)

Scheme 2 Response mechanism of immobilized ATBD on PVC membrane towards Hg2+
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Hg2+. The results are shown in Table 2. The widest working
concentration range was obtained with DOS; therefore, this
plasticizer was used for further studies. Lipophilic borate salts
are frequently used as anionic additives in potentiometric and
optical cation-selective sensors based on solvent polymeric
membranes [80]. The amount of anionic sites in the mem-
branes has effects on the linear range and selectivity of
optodes [8]. The composition of the optode membrane with
respect to KTpClPB was optimized by preparing several
membranes with different amounts of KTpClPB. The re-
sponse behavior of these optode membranes are shown in
Table 2. From the results it can be seen that the response
concentration range of the optode membrane becomes wider
with shorter response time as the amount of KTpClPB in the
optode membrane increases from 1 % to 2 %, which might be
attributed to the increasing of hydrophilicity upon addition of
KTpClPB. However, the response concentration range of the
optode membrane becomes narrower when the content of
KTpClPB is larger than 2 %. Therefore, 2 % KTpClPB
provided the best response for Hg2+ and was chosen for
further studies.

The data given in Table 2 give an indcation of the pro-
nounced influence of the amount of the ionophore on the
working range of the proposed optical sensor. As it can be
seen, an increase in the amount of ATBD from 1 % to 3 %
resulted in an improved lower limit of the working range,
emphasizing the expected increase in the sensitivity of the
optical sensor in the presence of increased amount of the
ionophore in the membrane phase.

Effects of pH

The effect of the pH of the solution, in which the sensor is
applied is a critical factor that must be considered definitely.
To study the effect of pH on the optode response to Hg2+, the
fluorescence intensity versus pH plot was obtained by chang-
ing the solution pH with different buffer solutions and fixing
the Hg2+ concentration at 1.0 μM (Fig. 6). The pH of solution
was adjusted by buffers of CH3COOH/NaCH3COONa Tris–
HCl buffer and NH4Cl/NH3. As it is seen, the response of the
sensor increased with increasing pH value of solution and
reached a plateau between pH 5.0 and 7.0. At pH<5.0 the
fluorescence response of the sensor membrane decreased with
decreasing pH value due to proton binding by imine nitrogen
[81] and on the other hand, the diminished fluorescence
response at pH>7.0 could be attributed to the formation of
Hg2+ ion hydroxides [82], as well as a possible slight swelling
of the polymeric film under alkaline conditions. Hence, in the
subsequent experiments, the pH values of all solutions were
adjusted to 6.0 for further studies.

Response Mechanism, Binding Mode and Measuring Range

Among the various detection systems used in mercury
optodes, those based on sulfur-containing ligands. Generally,
these systems have shown better selectivity and sensitivity
[82]. Hg2+ displays great affinity for soft coordination centers
like sulfur [83, 84], therefore, ligand ATBD with sulfur-
containing sites was investigated as an active ionophore for

Fig. 7 1H NMR spectra of sensor
ATBD (1.0 μM) with Hg2+ in d6-
DMSO: (a) ATBD and (b) ATBD
+ Hg2+ (1.0 eq.)

J Fluoresc (2014) 24:859–874 865



highly selective and sensitive determination of mercury ion.
Hg2+ bonding takes place with NSSN donor sites of the
azomethine –N and thiophenolate -S [85]. When ATBD
(LH2) was doped in plasticized PVC together with the anionic
additive KTpClPB at pH 6.0, the system becomes a selective
Hg2+ sensor. Furthermore, the fluorescence intensities of the
optode membrane gradually increased with increasing Hg2+

concentrations, which constitutes the basis for the determina-
tion of Hg2+ with the proposed sensor proposed in this work.
The lipophilic anionic sites, i.e. TpClPB- provide the optode
membrane with the necessary ion-exchange properties be-
cause the flouroionophore acts as a neutral ligand, and hence
can’t function as an ion exchanger. The overall equilibrium

between the aqueous sample solution (aq) and the organic
membrane phase (org) is represented in Scheme 2.

The enhancement of the fluorescence of Hg2+ complex
compared to the parent ligand may be due to CHEF (chelation
enhancement of fluorescence emission) [86]. Factors like a
simple binding of the ligand to the metal ions [87], an increase
in rigidity in structure [88], a restriction in the photo induced
electron transfer (PFT) [89, 90] etc. are assigned to the ap-
pearance and enhancement of the photoluminescence (PL). In
the present case, the first two factors seem to be responsible
for the enhancement PL.

For elucidation the binding mode, the 1H NMR-titration
experiments were carried out. As shown in Fig. 7, the 1H

Fig. 8 TOF-MS spectra of sensor
ATBD (1.0 μM) with Hg2+ in d6-
DMSO: (a) ATBD and (b) ATBD
+ Hg2+ (1.0 eq.)
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NMR spectrum of ATBD showed a singlet signal at δ
3.64 ppm which was attributed to thiol -SH protons. Upon
addition of Hg2+, the SH signal disappeared, which suggested
that a Hg2+ bound to the two sulphur atoms of the ATBD
backbone via deprotonation of SH groups. The singlet signal
at δ 8.23 ppm in the parent ATBD which was attributed to the
azomethine (-CH=N-) protons displayed an upper filed shift
(δ 7.94) upon the addition of Hg2+ which originated from the
coordination of the azomethine nitrogen to Hg2+. Moreover,
the binding mode of ATBD (LH2) with Hg

2+ was also exam-
ined by TOF-MS spectra (Fig. 8). The positive-ion mass
spectrum of ATBD upon addition of Hg2+ (1 equiv) exhibited
one intense peak at m/z=547, corresponding to the ion [HgL],
corroborating the 1:1 binding stoichiometry of LH2 (ATBD)

with Hg2+. Taken together, the above results indicated a
plausible interaction mode of ATBD/Hg2+ as proposed in
Scheme 3, in which Hg2+ ion was coordinated with two “N”
and two “S” atoms of ATBD.

Figure 9 shows the fluorescence emission spectra of the
sensing membrane exposed to the solutions containing differ-
ent concentrations of Hg2+ (λex 403 nm). The linearity was
determined by plotting the fluorescence enhancement value
ΔF (ΔF=F - F0, where F0 and F were the fluorescence emis-
sion intensities before and after addition of Hg2+) against the
negative logarithm of Hg2+ concentration, obtaining a linear
equation of ΔF=995.99+84.689 log [Hg2+] (R=0.9948) in
the concentration range of 1.0×10−10 to 1.0×10−2 mol L−1

(Fig. 10). The limit of detection (LOD) based on 3σ of the
blank was 7.23×10−11.

Response Time, Reproducibility, Short-Term Stability,
Lifetime and Regeneration

The dynamic response time, is an important analytical feature
of any optode. The response time was tested by recording the
fluorescence intensity change from a buffered solution at pH=
6 to a buffered Hg2+ solution over a wide concentration range
(1.0×10−10 to 1.0×10−2 mol L−1). The resulting intensity–
time curve (Fig. 11) revealed that, the fluorescence intensity of
the corresponding signal reached its equilibrium response in a
relatively short time of less than 35 s. It was obvious that the
response time is lower in concentrated solutions than dilute
solutions.

The repeatability and reproducibility of optical sensors are
two of their important characteristic features both of which
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Scheme 3 Plausible interaction mode of ATBD/Hg2+
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Fig. 9 Emission spectra of
ATBD sensing membrane after
exposure to different Hg2+

concentrations (1.0×10−10−1.0×
10−2 mol L−1) at pH=6.0.Dashed
curve represent blank solution
and arrows show the changes in
fluorescence intensity with
respect to an increase of Hg2+

concentration (λex 403 nm and
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were studied in this work. The reproducibility was examined by
preparing 8 different membranes from the same mixture and
measuring the fluorescence of each membrane at 544 nm using
1.0 μM Hg2+ (three repeated determinations) in the buffer
solutions at pH 6.0. The resulting coefficient of variation was
found to be±1.7 %. The short-term stability of the optical
sensor was studied by measuring its fluorescence intensity in
contact with 1.0μMHg2+ at pH 6.0 over a period of 10 h. From
the fluorescence measurements, after every 60 min (n=10), it

was found that the response was almost complete with only
2.5 % change in the fluorescence after 10 h monitoring. In
addition, it was found that the membrane sensor could be stored
in wet conditions without any measurable changes in its fluo-
rescence for at least 15 weeks, which implies that the ionophore
is quite stable in the membrane. Thus, the membrane sensor
was immersed in the buffer solution of pH 6.0 when not in use.

The reversibility of the optode was checked by washing the
used optodes with 0.2 mol L−1 thiocyanate and/or iodate
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Fig. 10 Calibration plot of the
sensor in the concentration range
of 1.0×10−10 − 1.0×10−2 mol L−1

at pH=6.0 in EtOH (λex=403 nm)
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solutions. The results showed that the optodes were not re-
generated to use one more time for Hg2+ determination. In
addition, HCl and/or HNO3 were also checked for the regen-
eration of the used optode by immersion of the used optode to
the acids solution (0.01, 0.05, and 0.10mol L−1) for 180 s. The
results showed that the optodes could be regenerated in
0.10 mol L−1 HNO3 solution. Therefore, each optode can be
used several times for Hg2+ analysis.

Selectivity

The selectivity behavior which is the relative optode response
for the primary ion over other ions present in solution, is one
of the most important characteristics of any ion-selective
optical sensor. To investigate the selectivity of the proposed
membrane sensor, the fluorescence intensity of a fixed con-
centration of Hg2+ (1.0×10−10 mol L−1) in a solution of
pH 6.0 was measured before (F0) and after addition (F) of
some potentially interfering ions such as K+, Na+, Mg2+, Ca2+,
Ba2+, Sr2+, Al3+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Ag+, Cd2+,
Mn2+, Fe3+ and Cr3+ at concentrations up to 1.0×10−2

mol L−1. The resulting relative error is defined as RE
(%)=[(F−Fo)/Fo]×100. The experimental results (Fig. 12) re-
vealed that most alkali, alkaline earth, and many transition
metal cations don’t show significant interference on the Hg2+

assay, where the observed relative error was less than±5 %
relative error, which is considered as tolerable.

Analytical Applications

To assess the applicability of the proposed chemosensor to
real samples, we further conducted Hg2+ detection in different

human hair samples, urine samples, collected from dentists
and well water samples. The water samples were collected
from three different places in Tabuk (Saudi Arabia). For
evaluating the accuracy of the method, a comparison between
results obtained by proposed method and cold vapor atomic
absorption spectrometry (CVAAS) was performed. As can be
seen in Table 3, the results obtained for both methods have
good agreements.
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Fig. 12 Interferences of different
metal ions (1.0×10−2 mol L−1)
onto the fluorescence
determination of Hg2+ ion (1.0×
10−10 mol L−1) using the
proposed membrane sensor at
pH 6.0

Table 3 Determination of Hg2+ in real samples of six replicate
measurements

Sample Amount of mercurya Relative error (%)

CVAAS Proposed sensor

Hair samplesc

1 172.90a±0.90b 173.64 a±0.80b −0.43
2 279.50a±4.40b 277.43±1.40b 0.74

3 197.50a±2.40b 1.96.43±1.25b 0.56

Urine samplesd

1 3.47a±0.05b 3.45a±0.05b 0.58

2 3.80a±0.08b 3.83a±0.08b −0.78
3 3.65a±0.02b 3.62a±0.02b 0.82

Well water samplesd

1 1.72a±0.03b 1.71a±0.02b 0.58

2 1.10a±0.07b 1.12a±0.06b −1.82
3 1.45a±0.05b 1.43a±0.07b 1.38

a Mean values of three determinations
b Standard deviation
c Reported value: μgKg−1

c Reported value: μgL−1
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Comparison of the Proposed Optode with Previously
Reported Methods

The present proposed sensor was compared to recently
Hg2+ sensing methods based on S-containing, Schiff bases
or immobilized ionphore (Table 4) [45, 54, 63, 68, 73, 82,
91–105]. Each of the reported method has its own merits,
but each method also offers some problems such as poor
reproducibility, limited sample adaptability, high cost, well-
controlled experimental conditions, complicated sample-
pretreatment, some inherent interference and time consum-
ing procedures. As can be seen, the proposed sensor
shows better selectivity, better LOD (7.23×10−11 mol L−1)
and short response time (35 s) relative to other reported
methods.

Conclusion

In conclusion, an efficient, easy, low-cost and high selective
fluoroionophore is developed and potentially utilized for selec-
tive and sensitive determination of Hg2+ based on a novel dithiol
Schiff base namely: N.N/bis(2-aminothiophenol)benzene-1,2-
dicarboxaldehyde (ATBD) immobilized within a plasticized
PVC membrane, with good optical and mechanical proper-
ties. The sensor showed short response time (35 s), appropri-
ate linear dynamic range (1.0×10−10 − 1.0×10−2 mol L−1)
and low detection limit (7.23×10−11 mol L−1). The proposed
fluorescence optode was successfully applied to the deter-
mination of Hg2+ ions in hair, urine and well water samples.
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